Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Cell ; 2023.
Article in English | EuropePMC | ID: covidwho-20243675

ABSTRACT

The Alpha, Beta and Gamma SARS-CoV-2 Variants of Concern (VOCs) co-circulated globally during 2020-21, fueling waves of infections. They were displaced by Delta during a third wave worldwide in 2021, in turn displaced by Omicron in late 2021. In this study, we use phylogenetic and phylogeographic methods to reconstruct the dispersal patterns of VOCs worldwide. We find that source-sink dynamics varied substantially by VOC, and identify countries that acted as global and regional hubs of dissemination. We demonstrate a declining role of presumed origin countries of VOCs to their global dispersal, estimating that India contributed <15% of Delta exports and South Africa <1-2% of Omicron dispersal. We estimate that >80 countries had received introductions of Omicron within 100 days of emergence, associated with accelerating passenger air travel and higher transmissibility. Our study highlights the rapid dispersal of highly transmissible variants with implications for genomic surveillance along the hierarchical airline network. Graphical Data analysis clarifies that dispersal of SARS-CoV-2 variants from their sites of initial detection was related to the amount of global air travel at the time of the variant's emergence, and that travel volume through "hub” sites distinct from the site of emergence was a key driver of variant spread.

2.
J Med Virol ; 95(6): e28848, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20239679

ABSTRACT

During COVID-19 pandemic, consensus genomic sequences were used for rapidly monitor the spread of the virus worldwide. However, less attention was paid to intrahost genetic diversity. In fact, in the infected host, SARS-CoV-2 consists in an ensemble of replicating and closely related viral variants so-called quasispecies. Here we show that intrahost single nucleotide variants (iSNVs) represent a target for contact tracing analysis. Our data indicate that in the acute phase of infection, in highly likely transmission links, the number of viral particles transmitted from one host to another (bottleneck size) is large enough to propagate iSNVs among individuals. Furthermore, we demonstrate that, during SARS-CoV-2 outbreaks when the consensus sequences are identical, it is possible to reconstruct the transmission chains by genomic investigations of iSNVs. Specifically, we found that it is possible to identify transmission chains by limiting the analysis of iSNVs to only three well-conserved genes, namely nsp2, ORF3, and ORF7.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Quasispecies , Pandemics , Genome, Viral
4.
Microorganisms ; 11(4)2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2303211

ABSTRACT

Since the beginning of the pandemic, the generation of new variants periodically recurs. The XBB.1.5 SARS-CoV-2 variant is one of the most recent. This research was aimed at verifying the potential hazard of this new subvariant. To achieve this objective, we performed a genome-based integrative approach, integrating results from genetic variability/phylodynamics with structural and immunoinformatic analyses to obtain as comprehensive a viewpoint as possible. The Bayesian Skyline Plot (BSP) shows that the viral population size reached the plateau phase on 24 November 2022, and the number of lineages peaked at the same time. The evolutionary rate is relatively low, amounting to 6.9 × 10-4 subs/sites/years. The NTD domain is identical for XBB.1 and XBB.1.5 whereas their RBDs only differ for the mutations at position 486, where the Phe (in the original Wuhan) is replaced by a Ser in XBB and XBB.1, and by a Pro in XBB.1.5. The variant XBB.1.5 seems to spread more slowly than sub-variants that have caused concerns in 2022. The multidisciplinary molecular in-depth analyses on XBB.1.5 performed here does not provide evidence for a particularly high risk of viral expansion. Results indicate that XBB.1.5 does not possess features to become a new, global, public health threat. As of now, in its current molecular make-up, XBB.1.5 does not represent the most dangerous variant.

5.
J Med Virol ; 95(4): e28688, 2023 04.
Article in English | MEDLINE | ID: covidwho-2256021

ABSTRACT

Viral metagenomics has been extensively applied for the identification of emerging or poorly characterized viruses. In this study, we applied metagenomics for the identification of viral infections among pediatric patients with acute respiratory disease, but who tested negative for SARS-CoV-2. Twelve pools composed of eight nasopharyngeal specimens were submitted to viral metagenomics. Surprisingly, in two of the pools, we identified reads belonging to the poorly characterized Malawi polyomavirus (MWPyV). Then, the samples composing the positive pools were individually tested using quantitative polymerase chain reaction for identification of the MWPyV index cases. MWPyV-positive samples were also submitted to respiratory virus panel testing due to the metagenomic identification of different clinically important viruses. Of note, MWPyV-positive samples tested also positive for respiratory syncytial virus types A and B. In this study, we retrieved two complete MWPyV genome sequences from the index samples that were submitted to phylogenetic inference to investigate their viral origin. Our study represents the first molecular and genomic characterization of MWPyV obtained from pediatric patients in South America. The detection of MWPyV in acutely infected infants suggests that this virus might participate (coparticipate) in cases of respiratory symptoms. Nevertheless, future studies based on testing of a larger number of clinical samples and MWPyV complete genomes appear to be necessary to elucidate if this emerging polyomavirus might be clinically important.


Subject(s)
COVID-19 , Polyomavirus Infections , Polyomavirus , Respiratory Tract Infections , Viruses , Infant , Child , Humans , Metagenomics , Brazil/epidemiology , Malawi/epidemiology , Phylogeny , SARS-CoV-2 , Polyomavirus Infections/epidemiology , Polyomavirus/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology
6.
Emerg Infect Dis ; 29(3): 664-667, 2023 03.
Article in English | MEDLINE | ID: covidwho-2282638

ABSTRACT

We tested coatis (Nasua nasua) living in an urban park near a densely populated area of Brazil and found natural SARS-CoV-2 Zeta variant infections by using quantitative reverse transcription PCR, genomic sequencing, and serologic surveillance. We recommend a One Health strategy to improve surveillance of and response to COVID-19.


Subject(s)
COVID-19 , Procyonidae , Animals , Humans , SARS-CoV-2 , Brazil/epidemiology
7.
Viruses ; 15(2)2023 01 24.
Article in English | MEDLINE | ID: covidwho-2250436

ABSTRACT

São Paulo is the financial center of Brazil, with a population of over 12 million, that receives travelers from all over the world for business and tourism. It was the first city in Brazil to report a case of COVID-19 that rapidly spread across the city despite the implementation of the restriction measures. Despite many reports, much is still unknown regarding the genomic diversity and transmission dynamics of this virus in the city of São Paulo. Thus, in this study, we provide a retrospective overview of the COVID-19 epidemic in São Paulo City, Southeastern, Brazil, by generating a total of 9995 near-complete genome sequences from all the city's different macro-regions (North, West, Central, East, South, and Southeast). Our analysis revealed that multiple independent introduction events of different variants (mainly Gamma, Delta, and Omicron) occurred throughout time. Additionally, our estimates of viral movement within the different macro-regions further suggested that the East and the Southeast regions were the largest contributors to the Gamma and Delta viral exchanges to other regions. Meanwhile, the North region had a higher contribution to the dispersion of the Omicron variant. Together, our results reinforce the importance of increasing SARS-CoV-2 genomic monitoring within the city and the country to track the real-time evolution of the virus and to detect earlier any eventual emergency of new variants of concern that could undermine the fight against COVID-19 in Brazil and worldwide.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Brazil/epidemiology , Latin America , Retrospective Studies
8.
J Med Virol ; 95(3): e28625, 2023 03.
Article in English | MEDLINE | ID: covidwho-2280054

ABSTRACT

Recombination is the main contributor to RNA virus evolution, and SARS-CoV-2 during the pandemic produced several recombinants. The most recent SARS-CoV-2 recombinant is the lineage labeled XBB, also known as Gryphon, which arose from BJ.1 and BM.1.1.1. Here we performed a genome-based survey aimed to compare the new recombinant with its parental lineages that never became dominant. Genetic analyses indicated that the recombinant XBB and its first descendant XBB.1 show an evolutionary condition typical of an evolutionary blind background with no further epidemiologically relevant descendant. Genetic variability and expansion capabilities are slightly higher than parental lineages. Bayesian Skyline Plot indicates that XBB reached its plateau around October 6, 2022 and after an initial rapid growth the viral population size did not further expand, and around November 10, 2022 its levels of genetic variability decreased. Simultaneously with the reduction of the XBB population size, an increase of the genetic variability of its first sub-lineage XBB.1 occurred, that in turn reached the plateau around November 9, 2022 showing a kind of vicariance with its direct progenitors. Structure analysis indicates that the affinity for ACE2 surface in XBB/XBB.1 RBDs is weaker than for BA.2 RBD. In conclusion, at present XBB and XBB.1 do not show evidence about a particular danger or high expansion capability. Genome-based monitoring must continue uninterrupted to individuate if further mutations can make XBB more dangerous or generate new subvariants with different expansion capability.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Bayes Theorem , Spike Glycoprotein, Coronavirus/chemistry
10.
J Med Virol ; 95(4): e28714, 2023 04.
Article in English | MEDLINE | ID: covidwho-2280052

ABSTRACT

The SARS-CoV-2 BF.7 variant represents one of the most recent subvariant under monitoring. At the beginning of the 2023 it caused several concerns especially in Asia because of a resurge in COVID-19 cases. Here we perform a genome-based integrative approach on SARS-CoV-2 BF.7 to shed light on this emerging lineage and produce some consideration on its real dangerousness. Both genetic and structural data suggest that this new variant currently does not show evidence of an high expansion capability. It is very common in Asia, but it appears less virulent than other Omicron variants as proved by its relatively low evolutionary rate (5.62 × 10-4 subs/sites/years). The last plateau has been reached around December 14, 2022 and then the genetic variability, and thus the viral population size, no longer increased. As already seen for several previous variants, the features that may be theoretically related to advantages are due to genetic drift that allows to the virus a constant adaptability to the host, but is not strictly connected to a fitness advantage. These results have further pointed that the genome-based monitoring must continue uninterruptedly to be prepared and well documented on the real situation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Asia/epidemiology , Biological Evolution
11.
Rev Assoc Med Bras (1992) ; 69(2): 257-261, 2023.
Article in English | MEDLINE | ID: covidwho-2253636

ABSTRACT

OBJECTIVE: Genome sequencing has been proved to be an excellent tool to monitor the molecular epidemiology of the disease caused by severe acute respiratory syndrome coronavirus 2, i.e., coronavirus disease 2019. Some reports of infected, vaccinated individuals have aroused great interest because they are primarily being infected with circulating variants of concern. To investigate the cases of infected, vaccinated individuals in Salvador, Bahia, Brazil, we performed genomic monitoring to estimate the magnitude of the different variants of concern in these cases. METHODS: Nasopharyngeal swabs from infected (symptomatic and asymptomatic), vaccinated or unvaccinated individuals (n=29), and quantitative reverse transcription polymerase chain reaction cycle threshold value (Ct values) of ≤30 were subjected to viral sequencing using nanopore technology. RESULTS: Our analysis revealed that the Omicron variant was found in 99% of cases and the Delta variant was found in only one case. Infected, fully vaccinated patients have a favorable clinical prognosis; however, within the community, they become viral carriers with the aggravating factor of viral dissemination of variants of concern not neutralized by the currently available vaccines. CONCLUSION: It is important to acknowledge the limitations of these vaccines and to develop new vaccines to emergent variants of concern, as is the case of influenza vaccine; going through new doses of the same coronavirus vaccines is "more of the same."


Subject(s)
COVID-19 , Vaccines , Humans , Brazil/epidemiology , SARS-CoV-2/genetics , Prevalence , COVID-19/epidemiology , COVID-19/prevention & control , Genomics
13.
Infect Genet Evol ; 108: 105405, 2023 03.
Article in English | MEDLINE | ID: covidwho-2236360

ABSTRACT

The COVID-19 pandemic has brought significant challenges for genomic surveillance strategies in public health systems worldwide. During the past thirty-four months, many countries faced several epidemic waves of SARS-CoV-2 infections, driven mainly by the emergence and spread of novel variants. In that line, genomic surveillance has been a crucial toolkit to study the real-time SARS-CoV-2 evolution, for the assessment and optimization of novel diagnostic assays, and to improve the efficacy of existing vaccines. During the pandemic, the identification of emerging lineages carrying lineage-specific mutations (particularly those in the Receptor Binding domain) showed how these mutations might significantly impact viral transmissibility, protection from reinfection and vaccination. So far, an unprecedented number of SARS-CoV-2 viral genomes has been released in public databases (i.e., GISAID, and NCBI), achieving 14 million genome sequences available as of early-November 2022. In the present review, we summarise the global landscape of SARS-CoV-2 during the first thirty-four months of viral circulation and evolution. It demonstrates the urgency and importance of sustained investment in genomic surveillance strategies to timely identify the emergence of any potential viral pathogen or associated variants, which in turn is key to epidemic and pandemic preparedness.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Genomics , Databases, Factual , Mutation , Genome, Viral
16.
Viruses ; 15(2)2023 01 24.
Article in English | MEDLINE | ID: covidwho-2216963

ABSTRACT

Severe COVID-19 is characterized by angiogenic features, such as intussusceptive angiogenesis, endothelialitis, and activation of procoagulant pathways. This pathological state can be ascribed to a direct SARS-CoV-2 infection of human lung ECs. Recently, we showed the capability of SARS-CoV-2 to infect ACE2-negative primary human lung microvascular endothelial cells (HL-mECs). This occurred through the interaction of an Arg-Gly-Asp (RGD) motif, endowed on the Spike protein at position 403-405, with αvß3 integrin expressed on HL-mECs. HL-mEC infection promoted the remodeling of cells toward a pro-inflammatory and pro-angiogenic phenotype. The RGD motif is distinctive of SARS-CoV-2 Spike proteins up to the Omicron BA.1 subvariant. Suddenly, a dominant D405N mutation was expressed on the Spike of the most recently emerged Omicron BA.2, BA.4, and BA.5 subvariants. Here we demonstrate that the D405N mutation inhibits Omicron BA.5 infection of HL-mECs and their dysfunction because of the lack of Spike/integrins interaction. The key role of ECs in SARS-CoV-2 pathogenesis has been definitively proven. Evidence of mutations retrieving the capability of SARS-CoV-2 to infect HL-mECs highlights a new scenario for patients infected with the newly emerged SARS-CoV-2 Omicron subvariants, suggesting that they may display less severe disease manifestations than those observed with previous variants.


Subject(s)
COVID-19 , Virus Diseases , Humans , Endothelial Cells , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Integrins , Mutation
17.
COVID ; 2(12):1768-1777, 2022.
Article in English | Academic Search Complete | ID: covidwho-2199840

ABSTRACT

São Paulo state has been the epicenter of the Coronavirus Disease 2019 (COVID-19) in Brazil, ranking first by state with over six million reported cases. In February 2021, the P.4 lineage was reported in 21 cities across the state by public health authorities due to the L452R mutation. Here, by analyzing 17,304 genome sequences of SARS-CoV-2 sampled between February and August of 2021 in 476 distinct cities in São Paulo, we assess the transmission dynamics of the P.4 lineage and other SARS-CoV-2 variants that were, at the time of the study, co-circulating in the state. Additionally, clinical parameters from the city of Araras, São Paulo (N = 251) were considered to estimate the potential risk and mortality rate associated with the P.4 lineage since its higher prevalence was observed in that city. Our data suggest a low frequency (0.55%) of the P.4 lineage across the state, with the gamma variant being the dominant form in all regions (90%) at that time. Furthermore, no evidence of increased transmissibility and disease severity related to the P.4 lineage was observed. The displacement through the time of different lineages in São Paulo highlights how challenging genomic surveillance appears to track the emergence of new SARS-CoV-2 lineages, which could better guide the implementation of control measures. [ FROM AUTHOR]

18.
BMC Public Health ; 23(1): 15, 2023 01 03.
Article in English | MEDLINE | ID: covidwho-2196172

ABSTRACT

BACKGROUND: Brazil has been dramatically hit by the SARS-CoV-2 pandemic and is a world leader in COVID-19 morbidity and mortality. Additionally, the largest country of Latin America has been a continuous source of SARS-CoV-2 variants and shows extraordinary variability of the pandemic strains probably related to the country´s outstanding position as a Latin American economical and transportation hub. Not all regions of the country show sufficient infrastructure for SARS-CoV-2 diagnosis and genotyping which can negatively impact the pandemic response. METHODS: Due to this reason and to disburden the diagnostic system of the inner São Paulo State, the Butantan Institute established the Mobile Laboratory (in Portuguese: LabMovel) for SARS-CoV-2 testing which started a trip of the most important "hotspots" of the most populous Brazilian region. The LabMovel initiated in two important cities of the State: Aparecida do Norte (an important religious center) and the Baixada Santista region which incorporates the port of Santos, the busiest in Latin America. The LabMovel was fully equipped with an automatized system for SARS-CoV-2 diagnosis and sequencing/genotyping. It also integrated the laboratory systems for patient records and results divulgation including in the Federal Brazilian Healthcare System. RESULTS: Currently,16,678 samples were tested, among them 1,217 from Aparecida and 4,564 from Baixada Santista. We tracked the delta introductio in the tested regions with its high diversification. The established mobile SARS-CoV-2 laboratory had a major impact on the Public Health System of the included cities including timely delivery of the results to the healthcare agents and the Federal Healthcare system, evaluation of the vaccination status of the positive individuals in the background of exponential vaccination process in Brazil and scientific and technological divulgation of the fieldwork to the most vulnerable populations. CONCLUSIONS: The SARS-CoV-2 pandemic has demonstrated worldwide the importance of science to fight against this viral agent and the LabMovel shows that it is possible to integrate researchers, clinicians, healthcare workers and patients to take rapid actions that can in fact mitigate this and other epidemiological situations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Brazil/epidemiology , Pandemics/prevention & control , Vulnerable Populations
19.
New Microbiol ; 45(4)2022 May 23.
Article in English | MEDLINE | ID: covidwho-2169095

ABSTRACT

Persistence of detectable viral RNA does not depend on the symptomatic status of the patients. Here we describe the case of a strongly immunocompromised patient living with a prolonged SARS-CoV-2 Alpha variant infection without showing any symptoms. The importance of our findings is that the persistence of infection with an old SARS-CoV-2 strain, in an immunocompromised host, may allow recombination events generating new viral variants whose pathogenicity cannot be predicted. Our observation calls for the urgent need for continuous monitoring of SARS-CoV-2 genomic evolution in immunocompromised patients.

20.
J Pers Med ; 12(12)2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2143330

ABSTRACT

Tracking SARS-CoV-2 variants along with vaccinations are fundamental for severe COVID-19 disease prevention. A study was performed that focused on 43 patients with the SARS-CoV-2 infection who were admitted to the Emergency Department. RT-PCR-positive nasopharyngeal samples were sequenced using the MiSeq II system for variant detection. The main reason for Emergency Department admission was COVID-19 (67%), followed by other causes (33%); 51% patients were unvaccinated or vaccinated with a single dose and 49% had completed the vaccination course with two or three doses. Among the vaccinated group, 38% were admitted for COVID-19, versus 94.5% of the unvaccinated group. After admission, 50% of the vaccinated group and 36% of the unvaccinated group were discharged and allowed to go home, and 80% of the unvaccinated had no major comorbidities; 63% needed hospital admission and 5% required a stay in the Intensive Care Unit. Of these, 37% were vaccinated with 3 doses, 11% with two doses, 4% with a single dose, and 48% were unvaccinated. The 70% of the vaccinated patients who were admitted to hospital presented major comorbidities versus 38% of the unvaccinated group. Two unvaccinated patients that needed intensive care had relevant comorbidities and died. Genome sequencing showed the circulation of three omicron and two pure sub-lineages of omicron, including 22 BA.1, 12 BA.1.1, and 7 BA.2. Data showed the SARS-CoV-2 national and international migration patterns and how vaccination was useful for severe COVID-19 disease prevention.

SELECTION OF CITATIONS
SEARCH DETAIL